Small Body and Pulsar: Difference between revisions

From FRB Theory Wiki
Jump to navigation Jump to search
(Created page with " <!-- Brings in the summary table --> <!-- This is an example. Change the right hand side of all these assignments --> {{FRBTableTemplate |Category = Collision...")
 
No edit summary
 
Line 24: Line 24:
== Model Description ==
== Model Description ==


To be filled in with updated draft
 
If an orbiting body is massive enough to survive a close encounter without evaporation or breaking up (such as a planet or white dwarf), the highly magnetized pulsar wind will induce an electromagnetic field around the body. In this situation, Alfven wings are created as the pulsar wind combs the field lines from the nearest pole of the orbiting body and into space. The Alfven wings destabilize the plasma near the body’s surface to excite coherent emission. Far from the pulsar companion, the emission is convected with the wind traveling relativistically along the Alfven wings to form a synchrotron maser, whose emission is consistent with FRBs.


== Observational Constraints ==
== Observational Constraints ==


To be filled in with updated draft
The emission is only observable when the companion is aligned between the pulsar and Earth, and thus should repeat periodically. The signal would be composed of one to four peaks, a few milliseconds each, with an event duration less than a few seconds. No emission counterparts are expected, as synchrotron emission from a hot plasma component would be incoherent and thus too weak.

Latest revision as of 07:57, 10 October 2018





Summary Table
Category Progenitor Type Energy Mechanism Emission Mechanism Counterparts References Brief Comments
LF Radio HF Radio Microwave Terahertz Optical/IR X-rays Gamma-rays Gravitational Waves Neutrinos
Collision / Interaction Small Body and Pulsar Single Maser Synch. Yes -- -- -- -- -- -- -- -- http://adsabs.harvard.edu/abs/2014A%26A...569A..86M None

Definitions: LF Radio (3 MHz to 3 GHz); HF Radio (3 GHz to 30 GHz); Microwave (30 to 300 GHz)


Model Description

If an orbiting body is massive enough to survive a close encounter without evaporation or breaking up (such as a planet or white dwarf), the highly magnetized pulsar wind will induce an electromagnetic field around the body. In this situation, Alfven wings are created as the pulsar wind combs the field lines from the nearest pole of the orbiting body and into space. The Alfven wings destabilize the plasma near the body’s surface to excite coherent emission. Far from the pulsar companion, the emission is convected with the wind traveling relativistically along the Alfven wings to form a synchrotron maser, whose emission is consistent with FRBs.

Observational Constraints

The emission is only observable when the companion is aligned between the pulsar and Earth, and thus should repeat periodically. The signal would be composed of one to four peaks, a few milliseconds each, with an event duration less than a few seconds. No emission counterparts are expected, as synchrotron emission from a hot plasma component would be incoherent and thus too weak.