NS and Primordial BH: Difference between revisions

From FRB Theory Wiki
Jump to navigation Jump to search
No edit summary
Line 24: Line 24:
== Model Description ==
== Model Description ==


FRBs may result from interactions between NSs and primordial black holes (PBHs). As a PBH passes through a NS, the gravitational drag from the dense NS matter causes the PBH to slow down. The PBH will pass through the middle of the NS and, after losing sufficient kinetic energy, will be pulled back. The PBH will oscillate a few times before settling at the center of the NS. Here, the PBH will begin to accrete the NS until it is swallowed, causing the NS magnetosphere to be shed. The resulting magnetic reconnection releases an FRB. A repeating FRB may also be accounted for in this scenario: a small PBH will take longer to accrete the NS; as the NS is gradually consumed, multiple bundles of magnetic field lines within the NS may be reconfigured, causing multiple bursts.
As a PBH passes through a NS, the gravitational drag from the dense NS matter causes the PBH to slow down. The PBH will pass through the middle of the NS and, after losing sufficient kinetic energy, will be pulled back. The PBH will oscillate a few times before settling at the center of the NS. Here, the PBH will begin to accrete the NS until it is swallowed, causing the NS magnetosphere to be shed. The resulting magnetic reconnection releases an FRB. A repeating FRB may also be accounted for in this scenario: a small PBH will take longer to accrete the NS; as the NS is gradually consumed, multiple bundles of magnetic field lines within the NS may be reconfigured, causing multiple bursts.


== Observational Constraints ==
== Observational Constraints ==


Gravitational waves are expected counterparts, but may not be detectable at cosmological distances. The model can account multiple peaks, polarized emission and Faraday rotation.
Gravitational waves are expected counterparts, but may not be detectable at cosmological distances. The model can account multiple peaks, polarized emission and Faraday rotation.

Revision as of 08:35, 10 October 2018





Summary Table
Category Progenitor Type Energy Mechanism Emission Mechanism Counterparts References Brief Comments
LF Radio HF Radio Microwave Terahertz Optical/IR X-rays Gamma-rays Gravitational Waves Neutrinos
Collision / Interaction NS and Primordial BH Both Mag. reconnection -- Yes -- -- -- -- -- -- Yes -- https://arxiv.org/pdf/1704.05931.pdf None

Definitions: LF Radio (3 MHz to 3 GHz); HF Radio (3 GHz to 30 GHz); Microwave (30 to 300 GHz)


Model Description

As a PBH passes through a NS, the gravitational drag from the dense NS matter causes the PBH to slow down. The PBH will pass through the middle of the NS and, after losing sufficient kinetic energy, will be pulled back. The PBH will oscillate a few times before settling at the center of the NS. Here, the PBH will begin to accrete the NS until it is swallowed, causing the NS magnetosphere to be shed. The resulting magnetic reconnection releases an FRB. A repeating FRB may also be accounted for in this scenario: a small PBH will take longer to accrete the NS; as the NS is gradually consumed, multiple bundles of magnetic field lines within the NS may be reconfigured, causing multiple bursts.

Observational Constraints

Gravitational waves are expected counterparts, but may not be detectable at cosmological distances. The model can account multiple peaks, polarized emission and Faraday rotation.